Search results for "Force matching"

showing 2 items of 2 documents

Nuclear quantum effects in liquid water from path-integral simulations using anab initioforce-matching approach

2014

We have applied path integral simulations, in combination with new ab initio based water potentials, to investigate nuclear quantum effects in liquid water. Because direct ab initio path integral simulations are computationally expensive, a flexible water model is parameterized by force-matching to density functional theory-based molecular dynamics simulations. The resulting effective potentials provide an inexpensive replacement for direct ab inito molecular dynamics simulations and allow efficient simulation of nuclear quantum effects. Static and dynamic properties of liquid water at ambient conditions are presented and the role of nuclear quantum effects, exchange-correlation functionals…

Chemical Physics (physics.chem-ph)PhysicsStatistical Mechanics (cond-mat.stat-mech)Liquid waterBiophysicsAb initioFOS: Physical sciencesComputational Physics (physics.comp-ph)Condensed Matter - Soft Condensed MatterCondensed Matter PhysicsMolecular dynamicsForce matchingPhysics - Chemical PhysicsQuantum mechanicsDispersion (optics)Path integral formulationWater modelSoft Condensed Matter (cond-mat.soft)Density functional theoryPhysical and Theoretical ChemistryPhysics - Computational PhysicsMolecular BiologyCondensed Matter - Statistical MechanicsMolecular Physics
researchProduct

Ultra-coarse-graining of homopolymers in inhomogeneous systems

2021

Abstract We develop coarse-grained (CG) models for simulating homopolymers in inhomogeneous systems, focusing on polymer films and droplets. If the CG polymers interact solely through two-body potentials, then the films and droplets either dissolve or collapse into small aggregates, depending on whether the effective polymer–polymer interactions have been determined from reference simulations in the bulk or at infinite dilution. To address this shortcoming, we include higher order interactions either through an additional three-body potential or a local density-dependent potential (LDP). We parameterize the two- and three-body potentials via force matching, and the LDP through relative entr…

chemistry.chemical_classificationMaterials science02 engineering and technologyPolymer021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurface tensionForce matchingchemistryChemical physics0103 physical sciencesGeneral Materials ScienceGranularityDeformation (engineering)Thin film010306 general physics0210 nano-technologyJournal of Physics: Condensed Matter
researchProduct